

Real Time (>1GSS) Digital Signal Processing System Architecture

Michael Caffrey, Phil Blain, Mark Dunham
NIS Division
Los Alamos National Laboratory

General System Requirements

- Process modern signals, with pre-D methods, as they are generated by the sensor.
- Solve a multitude of complex RT problems without complete system redesign for each problem.
- Integrate many different COTS tools in an open standard for cost efficient supercomputing.
- Support TeraOps processing loads for filtering, FFT, cross correlation and recognition at > 1GSS rates.

Reconfigurable Signal Processing Architecture

- Reconfigurable, no new system designs to solve most new problems.
- Scaleable, allowing fast innovation incorporation.
- COTS components when possible, custom when necessitated by mission requirements.

500 MHz Signal Processing via Reconfigurable Computing

4

Reconfigurable Processor Key Components

- System Controller (General Purpose workstation)
- Industrial Computer Bus for Control & Status
- High Speed Dedicated Digital Data Paths and Crossbar Switches
- Data Source & Sink Nodes
- Computational Nodes

Reconfigurable Computing Architectures

Modular, Scaleable 100 Mss Base Architecture

System Controller (Host)

TASKS

- Configuration, Initialization & Program Download
- Man Machine Interface (MMI)
- Results Export & Archive
- Branched & Looped Algorithms
- I/O Routing
- Remote Login
- Status Monitor

Contenders (Workstations and Embedded Controllers)

- Alpha
- Wintel P6
- Sparc
- SGI

Control / Status Bus

• Requirements:

- Power
- Cooling
- Board Real Estate
- COTS * (+ Quality Software from Vendor components)
- EMI Shielding
- Speed
- Legacy Compatibility

Contenders

- VME (6U)
- VME (9U)
- VXI
- PCI
- CompactPCI

High Speed Digital Data Paths & Crossbars to Connect System Nodes

• Requirements

- Parallel Copper & Serial Optical
- >100 Mbytes / sec capacity
- 5 cm 1 km link distance options
- COTS bus interfaces & interface chips with vendor SW drivers
- COTS crossbar switches
- Low Power, small transceiver footprint (mezzanine size)

Contenders

- HIPPI 800, 1600, 6400
- HP Glink
- Fibre Channel
- Raceway & FPDP
- SkyChannel
- FDDI
- ATM (SONET OC12)
- Alink
- SCI
- MyriNet

System Nodes: Data Sources and Sinks

Source Nodes

- Digital Receivers
- Digitizers & Video Cameras
- General Purpose CPU & Custom Signal Processors

Sink Nodes

- Mass Storage e.g.. 1 TB tape cartridge, recorders
- Displays, Long Haul Export
- Larger System Servers

Computation System Nodes

ASICs

- 2 100x speed and density advantage over FPGAs
- Expensive to design & build
- Single task, not reprogrammable
- Mux/Demux processes (FFT)

FPGAs and CPLDs

- 2 100x speed and density advantage over DSPs
- Inexpensive to design & build (Gate Level Design)
- In circuit reprogrammable
- Integer, small word signal processing for parallel pipelined algorithms

• DSPs & general purpose processors

- Comparatively Slow per CPU
- Inexpensive (software)
- Extremely flexible and programmable (C/C++)
- Floating point, larger words, complex algorithms

Prototype Configurable Computer

Reconfigurable Computer Operations

Reconfigurable Computing Programming Sequence

VHDL Design Process

First Testbed: VXI ADC & Convolutional Detector

Coherent, PreDetection Processing at 1.2 Gss

Why is RCC A Good Investment for LANL & Sponsors?

- RCC is a critical technology: cost-effectively processing more information, without adding ASIC or supercomputer CPU costs
- RCC enables LANL and Sponsor programs:
 - RF smart trigger systems (Aldebaran)
 - Wideband continuous processing (Aldebaran)
 - IR video processing (Caliope)
 - Laser range correction and integration (Caliope)
 - Others: MTI image processing, ATR & compression